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1 Introduction

The aim of many economic studies is to infer a cause-effect relationship between an exposure A
and outcome Y . The standard analytical approach is to fit a regression model for Y , adjusted
for the exposure and any confounders which may distort the A− Y association. The estimated
coefficient for A is then used to obtain inference on the (conditional) exposure effect. In practice,
there is often little prior knowledge on which variables in a given data set are confounders and
furthermore how one should model their association with Y .

Data-adaptive procedures are therefore routinely employed in order to select the variables
to adjust for and/or choose a model for their dependence on Y . Such procedures are essential
when p, the dimension of the covariates, is close to or greater than n, the number of observations.
Popular methods include stepwise variable selection strategies and the Lasso.

However, current data adaptive techniques are subject to several pitfalls:

1. Model misspecification: the series of models considered may not contain the truth.

2. Optimal prediction methods may be suboptimal for exposure effect estimation:
variable selection methods developed to deliver predictions with minimal error do not
necessarily lead to exposure effect estimates with minimal bias or variance.

3. Lack of uniformity: there may be no finite sample size at which a given procedure is
guaranteed to attain its nominal coverage/size. In particular, the exposure effect estimator
may have a complex, non-normal distribution (due to jumping back and forth between
different selected models), even when the sample size is large.

Hence post-selection p-values and intervals are at best overly optimistic and at worst invalid.
We will describe how to obtain confidence intervals and p-values for an exposure effect in

a high-dimensional model, which are uniformly valid over the parameter space. Compared to
competing approaches, the proposed estimators are less sensitive to model misspecification and
the choice of selection strategy; the confidence intervals are straightforward to calculate, whilst
reflecting the uncertainty about the exposure effect after model selection.

2 The proposal

2.1 Doubly robust estimation of the exposure effect

Consider a study design which collects i.i.d. data on an outcome Y , a binary exposure A and a
vector of covariates L. Furthermore, we consider the high dimensional regression model

E(Y |A,L; θ, β) = g(θA+ β′L)
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Here, g() is a known link function and θ is the parameter of interest.
We will base estimation of the exposure effect θ on the estimating function

ψ(W ; θ; η) ≡ d(A,L; θ, η){Y − g(θA+ β′L)}

where W = (Y,A,L) and η is a vector of nuisance parameters. The function d(A,L; θ, η) will
be chosen such that ψ(W ; θ; η) is doubly robust ; it has mean zero (and hence is an unbiased
estimating function for θ) if either a model for the outcome or the exposure is correct.

For example, for a continuous outcome we may choose g() to be the identity link, so
E(Y |A,L; θ, β) = θA + β′L. We will also postulate a model for the conditional mean of the
exposure E(A|L) = E(A|L; γ) where E(A|L; γ) is a known function smooth in an unknown pa-
rameter γ. One typically uses a logistic model e.g. E(A|L; γ) = expit(γ′L). Then d(A,L; θ, η)
can be chosen to equal {A− E(A|L; γ)}, in which case

E[ψ(W ; θ; η)] = E[{A− E(A|L; γ)}{Y − θA− E(Y |A = 0, L;β)}] = 0

if either model E(A|L; γ) or model E(Y |A = 0, L;β) is correct. If g() is the log link, then
d(A,L; θ, η) = {A− E(A|L; γ)} exp(−θA) (Robins et al., 1992). An alternative exposure model
is required if g() is the logit link. Estimating θ therefore requires estimation of the nuisance
parameter η = (γ, β); the validity of our proposal rests on the procedure described below.

2.2 Estimation of the nuisance parameter η

The score ψ(W ; θ, η) is doubly robust, in the sense of having expectation zero if either of the
working models are correctly specified, but not necessarily both. However, plugging in an arbi-
trary sparse estimator η̃ of η will not generally deliver uniformly valid, doubly robust inference.
Consider performing a score test of θ = 0 based on the score ψ(W, 0, η̃), when one of the models
is misspecified. By a Taylor expansion, we have
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A sparse estimator of η is required in high-dimensional settings to make the ‘Remainder’ term
sufficiently small. But in general this does not prevent the existence of converging sequences ηn
for which

√
n(η̃ − ηn) (and thus the test statistic) has a complex non-normal distribution.

For a given function ψ(W ; θ, η), we therefore propose to to use the gradient ∂ψ(W ; θ, η)/∂η
as an estimating function for η, so as to ensure that 0 =

∑n
i=1 ∂ψ(Wi, θ, η)/∂η at the nuisance

parameter estimator η̂. This leaves (aside from the remainder) only a term involving ψ(W ; θ, η)
which is uniformly asymptotically normal. Specifically, one can estimate η by solving the follow-
ing penalized estimating equations with a bridge penalty:
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Here, λγ > 0 and λβ > 0 are penalty parameters, δ ≥ 1 and ◦ is the Hadamard product operator.
We will use γ̂ and β̂ to refer to the resulting estimators of γ and β respectively.

Note that by letting δ → 1+, the penalty terms correspond to the sub-gradient of the `1 or
Lasso norm penalty ||η||1 with respect to η. Therefore the estimates γ̂ and β̂ can be obtained
using standard software for (weighted) Lasso regression (e.g. ‘glmnet’). Then θ can be estimated
in closed form and confidence intervals can be constructed by inverting a score test.

3 Theoretical properties

For any vector a ∈ Rp, define its support as support(a) = {j ∈ {1, .., p} : aj 6= 0}. Let us define
the active sets of variables as Sγ = support(γn) and Sβ = support(βn). Furthermore, let sγ
denote the cardinality |Sγ | and likewise sβ = |Sβ|. We consider the behavior of our estimators
under two scenarios:

Either the exposure model or E(Y |A = 0, L;β) is correct: assuming no A−L interaction
on the relevant scale, then tests and confidence intervals for our estimators can be shown to be
uniformly valid if s2γ log

2(p ∨ n) = o(n) and s2β log
2(p ∨ n) = o(n) hold. These so-called ‘ultra-

sparsity’ conditions on γ and β are common in the literature on high-dimensional inference e.g.
Belloni et al. (2014). However, unlike other proposals, we do not assume that both considered
series of working models contain the truth.

All models are correct: we can get uniformly valid inference under the weaker conditions
sγ log(p ∨ n) = o(n), sβ log(p ∨ n) = o(n) and sγsβ log2(p ∨ n) = o(n), without requiring ultra-
sparsity. Hence we can allow for more complexity in one model as long as the other model is
easier to estimate. These sharpened rates are due to the test (and estimators) being doubly
robust; unlike Chernozhukov et al. (2017), we do not require sample splitting to obtain them.

Our procedure is related to the bias-reduced doubly robust estimation methodology of Vermeulen
and Vansteelandt (2015), and additionally incorporates regularization. Thus estimating η in this
way is also expected to prevent the inflation of bias upon minor misspecification of one or both
working models. Our proposal is further illustrated through simulations and a data analysis.
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